Биохимия
Цель дисциплины – ознакомить студентов со строением и основными свойствами различных биологически важных соединений (углеводы, жиры, белки, нуклеиновые кислоты), сформировать представления о путях метаболизма различных соединений, их взаимосвязи и механизмах регуляции метаболических процессов, создать представление о молекулярных механизмах, лежащих в основе функционирования различных органов и тканей.
Задачи дисциплины:
- Ознакомить студентов со строением и свойствами основных биологически важных молекул
- Проанализировать современные представления о структуре белка и механизмах функционирования ферментов. Дать представление о геномике и протеомике
- Рассмотреть различные процессы, обеспечивающие получение энергии в клетке
- Проанализировать процессы метаболизма различных биологически значимых соединений и взаимосвязь различных путей метаболизма в клетке
- Ознакомить студентов с молекулярными механизмами регуляции различных биохимических процессов, протекающих в различных органах и тканях.
- Время проведения
- осенний и весенний семестры III курса бакалавриата
- Продолжительность курса
- ??
- Форма отчетности
- Экзамен
- Альтернативный курс
- Нет
Программа курса:
Тема 1. Введение
Клетка как самовоспроизводящийся химический реактор. Потоки вещества, энергии и информации в клетке. Единство химического состава и типов превращений веществ в живых системах. Химический состав клеток. Способы существования организмов: аутотрофия, гетеротрофия. Определение понятий об обмене веществ, энергии и информации: метаболизм, катаболизм, анаболизм, рецепторные системы, хранение и передача генетической информации. Координация метаболизма в клетках, колониях микроорганизмов, тканях и органах. Специализация метаболизма. Биохимическая эволюция.
Тема 2. Химическая природа и свойства компонентов клеток (статическая биохимия)
1. Вода – универсальная среда для химических превращений в живых системах Свойства воды как растворителя. Динамическая структура воды. Влияние растворенных веществ на свойства воды. Электрохимия водных растворов. рН и буферные растворы. Специфика молекулярных взаимодействий в водных растворах.
2. Структуры и физико-химические свойства мономерных соединений, входящих в состав биологических объектов
Природные аминокислоты. Способы классификации аминокислот. Общие и специфические реакции функциональных групп аминокислот. Ионизация аминокислот. Методы разделения и идентификации аминокислот и пептидов. Необычные аминокислоты, их производные, пептиды.
Природные углеводы и их производные. Моносахариды и их химические свойства. Стереохимия и изомерия углеводов. Гликозиды, амино-, фосфо-, сульфосахариды. Олигосахариды. Альдо- и кетосахара и их дезоксипроизводные. Реакционная способность углеводов.
Липофильные соединения и их классификация. Насыщенные и ненасыщенные жирные кислоты. Изомерия и структура ненасыщенных жирных кислот. Нейтральные жиры. Фосфолипиды, сфинголипиды, гликолипиды. Полиморфизм фосфолипидов в водных растворах. Мицеллы и липосомы. Стерины, желчные кислоты. Методы очистки и разделения липофильных соединений.
Пуриновые и пиримидиновые основания. Нуклеозиды и нуклеотиды. Циклические нуклеотиды.
Витамины, коферменты и другие биологически активные вещества. Амид никотиновой кислоты. Липоевая кислота. Рибофлавин. Динуклеотиды (NAD, FAD). Биотин. Тиамин. Пантотеновая кислота, кофермент A (СоА). Пиридоксин- и пиридоксальфосфаты. Аскорбиновая кислота. Ретиноиды. Токоферол. Нафто- и убихиноны. Биогенные амины. Ацетилхолин. Железо-порфирины и хлорофилл. Железо-серные кластеры. Минеральный состав клеток и микроэлементы.
Тема 3. Структура и свойства биополимеров
Белки. Методы разделения и очистки белков. Первичная структура белка и методы ее установления. Природа пептидной связи. Упорядоченные (α-спираль, β-слои) и неупорядоченные структуры полипептидных цепей. Уровни структурной организации белков (первичная, вторичная, третичная, четвертичная и надмолекулярные структуры). Природа внутри- и межмолекулярных взаимодействий, обеспечивающих структуру белков (ионные взаимодействия, водородные связи, гидрофобные взаимодействия, дисульфидные связи). Особенности строения мембрано-связанных белков. Структурные белки (коллаген, кератины). Посттрансляционная модификация белков. Конформационная стабильность и подвижность белка. Денатурация белка и проблема ее обратимости. Связь между первичной и высшими степенями структурной организации белков. "Консервированные" и гомологичные последовательности аминокислот в белках. Взаимодействие белков и низкомолекулярных лигандов (миоглобин, гемоглобин). Сравнительная биохимия и эволюция белков.
Полисахариды. Химическое строение кpахмала, гликогена, целлюлозы, хитина. Гомо- и гетерополисахариды. Протеогликаны. Гликолипиды. Первичная, вторичная и более высокие уровни организации полисахаридов, гликопротеинов, сульфополисахаридов.
Нуклеиновые кислоты. Азотистые основания и пентозы, входящие в состав ДНК и РНК. Комплементарные пары нуклеотидов . Правило Чаргаффа. В-структура ДНК (двойная спираль Уотсона-Крика). Другие упорядоченные структуры нуклеиновых кислот. Денатурация и ренатурация ДНК. Суперспирализация ДНК. Различные типы РНК. Гистоны и строение хроматина. Методы установления первичных последовательностей нуклеотидов в нуклеиновых кислотах (секвенирование).
(Здесь и далее курсивом выделены разделы, обычно не обсуждающиеся в курсе лекций. Предполагается, что эти разделы достаточно полно представлены в предыдущих, параллельных и последующих курсах лекций.)
Тема 4. Биологические мембраны
Липосомы как модель биологических мембран. Физико-химические свойства двойной фосфолипидной мембраны (проницаемость, подвижность молекул фосфолипидов). Химическая гетерогенность фосфолипидов мембраны. Холестерин. Специфичность фосфолипидного состава биологических мембран. Динамическая модель биологических мембран Сингера-Никольсона. Периферические и интегральные белки мембран. Двумерная диффузия белков в мембранах. Асимметрия биологических мембран. Топография белков и липидных компонентов мембран. Каналы, поры, переносчики, рецепторы и избирательная проницаемость биологических мембран. Антибиотики – ионофоры.
Тема 5. Ферментативный катализ
Общие представления o катализе. Физический смысл константы скорости химической реакции (энергетическая диаграмма реакции, переходное состояние, энергия активации). Классификация каталитических механизмов (общий и специфический кислотно-основной катализ, ковалентный катализ, промежуточные соединения). Белки – биологические катализаторы. Стационарное приближение при рассмотрении ферментативных реакций. Уравнение Михаэлиса-Бриггса-Холдейна. Графические методы анализа ферментативных реакций. Физический смысл константы Михаэлиса. Максимальные скорости ферментативных реакций. Активность и числа оборотов ферментов. Специфичность ферментативного катализа. Ингибиторы и активаторы ферментов. Обратимость ферментативного катализa. Кофакторы. Регулируемость ферментaтивного катализа. Изо- и аллостерическое связывание лигандов-регуляторов c белком-ферментом. Кооперативные эффекты в ферментативном катализе. Изоферменты. Международная классификация ферментов. Катализ и проницаемость мембран. Химические механизмы ферментативного катализа (сериновые протеазы, пиридоксалевый катализ, карбоангидраза и др.). Специфическая локализация ферментов в клетке.
Тема 6. Основы биоэнергетики
Изменение свободной энергии и равновесие обратимых реакций. Сопряженные реакции. Ферменты-лигазы в качестве устройств, обеспечивающих сопряжение. Соединения c высоким потенциалом переноса групп. Концепция фосфорильного потенциала. АТР – универсальный источник энергии в биологических системах. Другие "богатые энергией" соединения (пирофосфат, креатинфосфат, фосфоенолпируват, ацилтиоэфиры, ацилфосфаты). Регулирование фосфорильного потенциала. Креатинкиназная и аденилаткиназная реакции. Нуклеозид моно-, ди- и трифосфат киназные реакции. Энергетическая эффективность сопряженных реакций. Тепловые эффекты биохимических превращений и терморегуляция. Активный транспорт веществ через биологические мембраны. Транспортные АТРазы.
Тема 7. Обмен углеводов
Фосфоролиз гликогена. Гидролиз крахмала. Гексокиназная и глюкокиназная реакции. Гликолиз и гликогенолиз. Прямое окисление глюкозы. Включение гексоз и пентоз в гликолитический распад. Молочнокислое и спиртовое брожение. Стехиометрические уравнения гликолиза и гликогенолиза. Образование АТР, сопряженное с распадом глюкозо-6-фосфата до молочной кислоты. Гликолитическая оксидоредукция. Характеристика отдельных ферментов гликолиза Регулирование гликолиза. Регуляторные механизмы фосфоролиза гликогена и фосфофруктокиназной реакции. Обратимость гликолиза и глюконеогенез. Цикл Кори. Синтез гликогена. Стехиометрические уравнения синтеза глюкозы и гликогена из молочной кислоты. Содержание глюкозы, лактата и пирувата в крови как физиологический показатель.
Тема 8. Обмен липидов
Транспорт липофильных веществ: желудочно-кишечный тракт – кровь – клетки. Липазы и фосфолипазы. Включение глицерина в гликолитические реакции. Активация жирных кислот. Роль карнитина в транспорте жирных кислот в митохондрии. Окислительный распад жирных кислот (β-окисление). Конечные продукты распада «четных» и «нечетных» жирных кислот. Образование ацетоацетата. Содержание «кетоновых» тел (ацетоацетат, ацетон, β-оксибутират) как физиологический показатель. Источники ацетил-СоА для синтеза жирных кислот. Система синтеза жирных кислот. СоА и ацилпереносящие белки. Синтез фосфолипидов. Синтез нейтрального жира. Стехиометрические уравнения распада жирных кислот до ацетил-СоА. Стехиометрические уравнения синтеза жирных кислот из ацетил-СоА.
Тема 9. Обмен аминокислот и других азотистых соединений
Внеклеточный (пищеварительный) протеолиз. Заменимые и незаменимые аминокислоты. Переаминирование. Декарбоксилирование аминокислот. Окислительное дезаминирование аминокислот. α-Кетокислоты – продукты распада аминокислот. Детоксикация аммиака. Аммониотелия, уреотелия и урикотелия. Синтез мочевины в качестве конечного продукта обмена азотсодержащих соединений у млекопитающих. Стехиометрические уравнения образования мочевины. Конечные продукты и схемы распада пуриновых и пиримидиновых оснований. Глутамин как транспортная форма аммиака. Креатин и креатинин. Внутриклеточный протеолиз. Убиквитин, протеосомы. Общие представления о синтезе заменимых aминокислот. Активация аминокислот и синтез аминоацил-t-РНК. Общие представления o синтезе белка рибосомами.
Тема 10. Распад ди-, трикарбоновых кислот
Окислительное декарбоксилирование пирувата. Ацетил-СоА – универсальный интермедиат распада жиров, углеводов и белков. Пути образования щавелево-уксусной кислоты. Цикл ди-, трикарбоновых кислот (цикл Кребса). Стехиометрическое уравнение распада пирувата до СО2. Энергетическая и пластическая функции цикла Кребса.
Тема 11. Терминальное окисление
Коферменты – продукты окислительных реакций (NAD+/NADH; NADP+/NADPH; убихинон/убихинол). Оксидазы и механизмы активации кислорода. Электрон-трансферазные реакции и понятие o дыхательных цепях. Структура митохондрий и локализация компонентов дыхательной цепи млекопитающих. Перенос восстановительных эквивалентов через мембрану митохондрий. Трансгидрогеназная реакция. Компоненты дыхательной цепи. Дыхательная цепь – преобразователь энергии (теория электрохимического сопряжения П. Митчела). Обратимая Н+-АТРаза – главное устройство для синтеза АТР в аэробных клетках. Стехиометрические уравнения окисления NADH и убихинола кислородом. Эффективность сопряжения окислительного фосфорилирования. Механизмы термогенеза. Дыхательные цепи микросом. Цитохром P-450 и окислительная деструкция ксенобиотиков.
Тема 12. Регуляция и интеграция метаболизма
Ключевые пары метаболитов (NAD(Р)+/NAD(Р)Н; АТР/ADP; Ацил-СоА/СоА; лактат/пируват; β-оксибутират/ацетоацетат) и факторы, влияющие на их концентрации. Дивергенция катаболических и анаболических цепей метаболизма. Типы регулирования активности ферментов и переносчиков. Стехиометрическое регулирование (алло- и изостерические ингибиторы и активаторы ферментов). Регулирование активности ферментов их ковалентной модификацией: фосфорилирование, ацилирование, ADP-рибозилирование. Протеинкиназы и протеинфосфатазы. Каскадный принцип регулирования ферментов. Гормоны в качестве первичных управляющих сигналов метаболизма. Рецепторы гормонов и G-белки. Механизмы и результаты действия инсулина, адреналина, глюкагона. Вторичные посредники передачи сигналов: циклические нуклеотиды, ионы Са+2, фосфатидилинозитол. Внутриклеточный протеолиз. Тканевая специфичность метаболизма.
Список рекомендуемой литературы:
- Д. Нельсон, М. Кокс, Основы биохимии Ленинджера, Москва, Бином, 2012
- А. Ленинджер, Основы биохимии, Москва, Мир, 1985
- Л. Страйер, Биохимия, Москва, Мир, 1984
- Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл, Биохимия человека, Москва, Мир, 1993,
- Е.С. Северин, Биохимия Учебник для вузов, Москва, ГЭОТАР, 2003
- Я. Кольман, К-Г. Рем, Наглядная бииохимия, Москва, Мир, 2000
- J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, New York, H.Freeman and Co, 2007
- D.L. Nelson, M.M. Cox, Lehninger principles of biochemistry, New York, W.H.Freeman and Co, 2005
- А. Уайт, Ф. Хендлер, Э. Смит, Р. Хилл, И. Леман, Основы биохимии, Москва, Мир, 1981
- В.П. Скулачев, А.В. Богачев, Ф.О. Каспаринский, Мембранная биоэнергетика, Москва, Издательство МГУ, 2010
- Ч. Кантор, П. Шиммел, Биофизическая химия, Москва, Мир, 1984